Add a Second Hard Drive to Your LS Pro v1/LS Live v1

From NAS-Central Buffalo - The Linkstation Wiki
Revision as of 17:37, 21 July 2008 by Mindbender (Talk | contribs) (Add a Second Hard Drive to Your LS Pro moved to Add a Second Hard Drive to Your LS Pro v1/LS Live v1: The v2 hardware looks totally the kurobox pro.)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search
Adding a second SATA drive to your Linkstation Pro is as simple as installing a 0.01 uF surface mount capacitor at C279, C280, C281, and C282 and then installing the proper Molex connector at CN8.
eSATA port dry fit prior to soldering.

It is very important that you tin (and leave a bit of extra solder connected to) the capacitors as you cannot place a small enough amount of solder with just the solder. It would also require 3 hands to do so. You need the smallest bent nose jeweler's tweezers you can find ($1.30 at the local flea market). The width of one of the tips must be smaller that the spacing between adjacent capacitors. You will be heating both ends of the capacitor at one time. File a knife edge onto the iron tip and press the edge down the length of the capacitor while you hold it in place with the tweezers. be gentle as those capacitors like to fly across the room. Hold with moderate pressure until the solder is hot. You might even hear/feel a creaking sound when the solder goes to liquid. Hold the iron in place for about 2 more seconds after the sound. When the cap sets into place remove the iron and let it cool for a second. Once cool, remove the tweezers. The hard part is getting the adjacent capacitor in place without heating the first one. You also must hold the capacitor in place or it will simply stick to the soldering iron when you remove the iron. That's why you need the smallest tweezers you can get. After the capacitors are installed, install the eSATA connector.

The correct part to use is Molex part number 47082-1000 eSATA connector. This connector is designed to withstand 5000 plug/unplug cycles while the standard SATA connector is designed to only withstand 50 cycles.

You will need to bend the seven contacts down slightly before installing the connector. This will preload the pins when you solder the shield in place and then all that is necessary os to heat the seven pads oat CN8. The solder will melt towards the pins of the Molex connector and you will wind up with a nice solder joint. You will need to cut off one of the black alignment pins prior to installing the connector and a dry fitting will let you determine which pin is the correct one to remove.

To test this I plugged the hard disk into the new sata port (I didn't have a spare SATA drive). The bootloader would not boot directly to the SATA drive plugged into CN8 so I bbooted the device using TFTP to retrieve the kernel and initrd. Once the device had the kernel and initrd loaded it pivoted to the root filesystem on the SATA drive even though it was attached to the secondary SATA port. I have attached a portion of the DMESG showing the device was recognized:

  ...o Checksum offload enabled
  o Loading network interface ** egiga_init_module (0)
Intergrated Sata device found
scsi0 : Marvell SCSI to SATA adapter
scsi1 : Marvell SCSI to SATA adapter
  Vendor: WDC       Model: WD2500JS-00NCB1   Rev: 10.0
  Type:   Direct-Access                      ANSI SCSI revision: 03
SCSI device sda: 488397168 512-byte hdwr sectors (250059 MB)
SCSI device sda: drive cache: write back
SCSI device sda: 488397168 512-byte hdwr sectors (250059 MB)
SCSI device sda: drive cache: write back
 sda: sda1 sda2 sda3 sda4
Attached scsi disk sda at scsi0, channel 0, id 0, lun 0
Attached scsi generic sg0 at scsi0, channel 0, id 0, lun 0,  type 0
physmap flash device: 400000 at ff800000
CFI: Found no phys_mapped_flash device at location zero....
The next step after installing the SATA connector is to place the board back into the metal chassis and mark
Second SATA port installed as viewed from the back of the unit. This opening still needs some sanding and polishing.
the location of the new opening that must be cut to allow access to the connector from the outside of the case. A dremel tool works well for cutting the chassis. After cutting the hole into the chassis, place the chassis into the plastic case and use a hot pin to mark the corners of the opening in the plastic case. Heat the pin sufficiently to poke completely through the case and then use a hot blade to connect the dots you just made in the case. I've found that a razor knife's blade heated with a torch will cleanly cut through the plastic case.